我们非常感谢支持
西蒙斯基金会和成员机构。

范畴论

2021年4月的Math.ct的作者和标题

[总共36个条目:1-25|26-36.]
[每页显示25个条目:较少|更多的|全部]
[1] 必威精装版App西汉姆联arxiv:2104.00162[PDF.PS.其他]
标题:无点施工实际指数
注释:增加了初步部分和结论。此外,还重新加工和抛光介绍和主要部分,加上修复了一些乳胶问题
主题: 类别理论(Math.ct)
[2] 必威精装版App西汉姆联arxiv:2104.00367[PDF.PS.其他]
标题:有关Monad和理论的完整性
作者: 罗马kositsyn.
注释:53页
主题: 类别理论(Math.ct)
[3] 必威精装版App西汉姆联arxiv:2104.00666[PDF.PS.其他]
标题:有关派生所有精确类别的无界功能的注释,其中包含适用于Ind-and Pro-unicctors的应用程序
作者: 杰克凯利
注释:24页,初步版;评论欢迎
主题: 类别理论(Math.ct);K-理论与同源性(Math.Kt)
[4] 必威精装版App西汉姆联arxiv:2104.02887[PDF.PS.其他]
标题:全面主题的变化
作者: 罗斯街
注释:14页;致力于r.f.c.的记忆。(鲍勃)沃尔特斯
主题: 类别理论(Math.ct)
[5] 必威精装版App西汉姆联arxiv:2104.03121[PDF.PS.其他]
标题:丰富的长单水分类别我:中心
作者: 梁王魏元张志浩郝正
注释:42页
主题: 类别理论(Math.ct);量子代数(Math.Qa)
[6] 必威精装版App西汉姆联arxiv:2104.03826[PDF.PS.其他]
标题:通过阿比埃斯类别之间的函数来传输CS-Rickart和双CS-Rickart属性
注释:14页
主题: 类别理论(Math.ct);戒指和代数(math.ra)
[7] 必威精装版App西汉姆联arxiv:2104.03832.[PDF.PS.其他]
标题:在abelian类别中强大的cs-rickart和双重强大的cs-rickart对象
注释:15页。必威精装版App西汉姆联ARXIV Admin注意:文本重叠必威精装版App西汉姆联arxiv:2007.11059
主题: 类别理论(Math.ct);戒指和代数(math.ra)
[8] 必威精装版App西汉姆联arxiv:2104.04425.[PDF.PS.其他]
标题:具有二次和立方关系的机构二元非对称作用的兼容结构
作者: 邢高李国惠湖张
注释:26页
主题: 类别理论(Math.ct);组合(Math.co);戒指和代数(math.ra)
[9] 必威精装版App西汉姆联arxiv:2104.05616[PDF.PS.其他]
标题:扭转理论和V组的覆盖物
作者: aline michel.
注释:21页
主题: 类别理论(Math.ct)
[10] 必威精装版App西汉姆联arxiv:2104.05650.[PDF.PS.其他]
标题:模型上的过顶部
注释:30页
主题: 类别理论(Math.ct);逻辑(math.lo)
[11] 必威精装版App西汉姆联arxiv:2104.06362[PDF.PS.其他]
标题:纤维分类理论的障碍和态度分类
主题: 类别理论(Math.ct)
[12] 必威精装版App西汉姆联arxiv:2104.06537[PDF.PS.其他]
标题:在局部有限的阶级类别的coslices和逗号
作者: Axel Osmond.
注释:27页
主题: 类别理论(Math.ct)
[13] 必威精装版App西汉姆联arxiv:2104.07090.[PDF.PS.其他]
标题:关于环形振作的概念
作者: Vladimir Drinfeld.
注释:22页
主题: 类别理论(Math.ct);代数几何(math.ag);代数拓扑(Math.at);数字理论(Math.nt);代表理论(math.rt)
[14] 必威精装版App西汉姆联arxiv:2104.07747[PDF.其他]
标题:编织丰富的长尾类别的特征
作者: 扎卡里戴尔
注释:33页,许多Tikz图
主题: 类别理论(Math.ct);量子代数(Math.Qa)
[15] 必威精装版App西汉姆联arxiv:2104.08583[PDF.PS.其他]
标题:规范地图的逻辑理论:态度,二元性,Canonicity和综合结构的元素和区分分析
作者: 大卫埃尔米曼
主题: 类别理论(Math.ct)
[16] 必威精装版App西汉姆联arxiv:2104.08999.[PDF.PS.其他]
标题:Beck扭曲,正式未定义的物体,以及Kähler差异
主题: 类别理论(Math.ct)
[17] 必威精装版App西汉姆联arxiv:2104.09421[PDF.PS.其他]
标题:较高等级图的概括
主题: 类别理论(Math.ct)
[18] 必威精装版App西汉姆联arxiv:2104.09601[PDF.其他]
标题:立方模型类别的本地化
作者: Brice Le Grignou.
注释:24页
主题: 类别理论(Math.ct);代数拓扑(Math.at)
[19] 必威精装版App西汉姆联arxiv:2104.09840.[PDF.PS.其他]
标题:抽象构建的主要光谱
主题: 类别理论(Math.ct)
[20] 必威精装版App西汉姆联arxiv:2104.09897[PDF.其他]
标题:通过字符串图表在3美元 - 类别中的一致性连贯
主题: 类别理论(Math.ct);量子代数(Math.Qa)
[21] 必威精装版App西汉姆联arxiv:2104.11399.[PDF.PS.其他]
标题:关于分析基质基数
作者: 詹姆斯富莲
注释:没有数字
主题: 类别理论(Math.ct);组合学(Math.co)
[22] 必威精装版App西汉姆联arxiv:2104.01057(来自math.kt的跨列表)[PDF.PS.其他]
标题:基金会和扩展力量
注释:32页,评论欢迎,首先是一个系列主动力动力运营
主题: K-理论与同源性(Math.Kt);代数几何(math.ag);代数拓扑(Math.at);类别理论(Math.ct)
[23] 必威精装版App西汉姆联arxiv:2104.01475(来自math.rt的跨列表)[PDF.PS.其他]
标题:迈向Harish-Chandra模块的张量分类:案例$ {\ rm sl} _2(\ mathbb r)$
主题: 代表理论(math.rt);类别理论(Math.ct)
[24] 必威精装版App西汉姆联arxiv:2104.01816(来自math.at的跨列表)[PDF.其他]
标题:$ \ idty $-类别的Monadic Tower
作者: Lior Yanovski.
注释:25页。删除了完整的Segal空间示例(由于间隙)。添加了一些引用并进行了轻微的更正。欢迎评论!
主题: 代数拓扑(Math.at);类别理论(Math.ct)
[25] 必威精装版App西汉姆联arxiv:2104.01841(来自Math.co的跨列表)[PDF.PS.其他]
标题:窗户类别:概括树宽超出图形
注释:24页
主题: 组合学(Math.co);计算复杂性(CS.CC);类别理论(Math.ct)
[总共36个条目:1-25|26-36.]
[每页显示25个条目:较少|更多的|全部]

禁用mathjax.MathJax是什么?

链接到:必威精装版App西汉姆联表单界面数学2104.接触Help.访问钥匙信息)