我们感谢支持
西蒙斯基金会和会员机构。

戒指和代数

新提交

[共7篇:1 - 7
[每页显示多达2000个条目:更少的|更多的

7月21日(星期五)的新申请

[1] 必威精装版App西汉姆联arXiv: 2107.00137pdfps其他
标题:沃德微分中的莱布尼兹一般法则
评论:西班牙语,17页
主题: 环与代数(math.RA);组合(math.CO)

本文推导了数列微积分的莱布尼兹法则。其主要思想是在$\psi$-Hurwitz环上定义一个与普通微积分和$q$-微积分兼容的产品家族。

[2] 必威精装版App西汉姆联arXiv: 2107.00321pdfps其他
标题:泊松包络代数和泊松微分算子代数的PBW定理及简单性判据
作者: 诉诉Bavula
评论:41页
主题: 环与代数(math.RA)

对于任意域上的任意泊松代数$\CP$,证明了Poincar\'{e}-Birkhof-Witt定理的一个(类似)形式,并给出了其泊松包络代数$\CU (\CP)$的几种表示/构造。给出了泊松微分算子$\CP$和$\CP$上泊松微分算子$\CU (\CP)$的代数$P\CD (\CP)$的显式生成器集和定义关系。
代数的简单性准则$\CU (\CP)$和
$P\CD (\CP)$。在代数$\CP$本质上是有限类型的情况下,给出了代数$\CU (\CP)$是定义域的判别条件,并给出了自然满同构$\CU (\CP)\ra P\CD (\CP)$是同构的判别条件。给出了泛同态的核,并给出了大类泊松代数的显式生成集。给出了代数$\CU (\CP)$和$P\CD (\CP)$的Gelfand-Kirillov维数的显式表达式。在Poisson代数$\CP$是一个本质有限型正则域的情况下,找到了$\CP$的显式简单性判据,并给出了$\CP$上微分算子的代数$\CU (\CP)$与微分算子的代数$\CD (\CP)$同构的判据。

[3] 必威精装版App西汉姆联arXiv: 2107.00454pdfps其他
标题:双交换代数的Gelfand-Kirillov维数
作者: Yuxiu呗Yuqun陈Zerui张
主题: 环与代数(math.RA)

我们首先通过研究某些有限集合,给出了计算有限给出的交换代数的Gelfand-Kirillov维数的一种快速方法。然后我们建立了双交换代数的Groebner-Shirshov基理论,并证明了每个有限生成的双交换代数都有一个有限的Groebner-Shirshov基。作为一个应用,我们证明了有限生成双交换代数的Gelfand-Kirillov维数是一个非负整数。

[4] 必威精装版App西汉姆联arXiv: 2107.00459pdfps其他
标题:三角代数的自由积
作者: Juwei黄Yuqun陈Zerui张
主题: 环与代数(math.RA)

本文应用Kolesnikov提出的复制代数的Gr\"obner-Shirshov基的方法,提供了一种构造三元代数自由积的一般方法。trioids)。特别地,解决了Zhuchok关于构造三子自由积的开放问题。

7月21日星期五的交叉名单

[5] 必威精装版App西汉姆联arXiv: 2107.00503(cross-list from math.CO) [pdf其他
标题:序和多面体:赋值的矩阵代数
评论:14页
主题: 组合(math.CO);环与代数(math.RA)

我们应用热带几何研究具有赋值域上的矩阵代数。使用最小-最大凸性的形状,称为多面体,我们回顾了Plesken和Zassenhaus介绍的分级顺序。这些被分类为多变性区域。通过引入阶的理想类多面体,提出了阶的理想理论。本文着重举例和计算。它提供了仿射建筑构型自同态环的几何组合学的第一步。

7月21日星期五的换班

[6] 必威精装版App西汉姆联arXiv: 1911.11331(替换)pdfps其他
标题:对象-一元群胚分度模
主题: 环与代数(math.RA)
[7] 必威精装版App西汉姆联arXiv: 2008.02255(替换)pdfps其他
标题:推导了斜二次超曲面的范畴
作者: 健Ueyama
评论:23页
主题: 环与代数(math.RA);代数几何(math.AG);表象理论(math.RT)
[共7篇:1 - 7
[每页显示多达2000个条目:更少的|更多的

禁用MathJaxMathJax是什么?

链接:必威精装版App西汉姆联接口形式找到数学最近2107联系help访问密钥信息)